If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-24t^2+80t-24=0
a = -24; b = 80; c = -24;
Δ = b2-4ac
Δ = 802-4·(-24)·(-24)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-64}{2*-24}=\frac{-144}{-48} =+3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+64}{2*-24}=\frac{-16}{-48} =1/3 $
| 3x=4=4-6x=3 | | -183=3(3+8v | | v^2+32v-185V=0 | | 3(2x-4)=5x=2 | | 12^7x=4 | | t^2-4t=77 | | 12(2b-3)=6-2b+14 | | (x×11+(5.6-x)×15.5)/5.6=3.914 | | y-1=33/4 | | 9a-5a=12+13a | | 2(n+1)+4n=2(3n+1) | | 5c*(3c)^6=0 | | 8/11(x-10=64 | | s−947=-648 | | 3x+4+27+x+10=x+26 | | 0=x+1/1-2 | | 4904.9/0.98=y | | y−213=424 | | f+368=801 | | 4x^3-6x^2+4x-2=1 | | (3x+3)/2=(2x-1)/3 | | 40|x=8 | | k9=3 | | 4*x=64 | | 4(2-x)-3(x-1)=3-6x | | 5x^2-5.25x+2.25=0 | | -14+2x+3=4x-13-17x | | 2(x+5)-3(x+2)=0 | | 29=y11 | | s+3=57 | | X+26=5x+14 | | 2(x-5)=7x+40 |